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SUMMARY

The retrosplenial cortex (RSC) is essential for mem-
ory and navigation, but the neural codes underlying
these functions remain largely unknown. Here, we
show that the most prominent cell type in layers 2/3
(L2/3) of the mouse granular RSC is a hyperexcitable,
small pyramidal cell. These cells have a low rheobase
(LR), high input resistance, lack of spike frequency
adaptation, and spike widths intermediate to those
of neighboring fast-spiking (FS) inhibitory neurons
and regular-spiking (RS) excitatory neurons. LR cells
are excitatory but rarely synapse onto neighboring
neurons. Instead, L2/3 is a feedforward, not feed-
back, inhibition-dominated network with dense
connectivity between FS cells and fromFS to LR neu-
rons. Biophysical models of LR but not RS cells pre-
cisely and continuously encode sustained input from
afferent postsubicular head-direction cells. Thus, the
distinct intrinsic properties of LR neurons can sup-
port both the precision and persistence necessary
to encode information over multiple timescales in
the RSC.

INTRODUCTION

The retrosplenial cortex (RSC) plays a critical role in learning and

memory. In humans, damage to the RSC results in both antero-

grade and retrograde amnesia, often purging several years of

recent memories (Ironside and Guttmacher, 1929; Heilman and

Sypert, 1977; Valenstein et al., 1987; Todd and Bucci, 2015;

Chrastil, 2018). Similar impacts on both anterograde and retro-

grade memory are seen in monkeys when the RSC is lesioned

(Buckley andMitchell, 2016). In rodents, RSC lesions impair per-

formance on spatial learning and fear conditioning tasks (Vann

et al., 2003, 2009; Van Groen et al., 2004; Keene and Bucci,
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2008; Katche et al., 2013; Todd et al., 2015, 2017; Sigwald

et al., 2016; Yamawaki et al., 2019b). Recent imaging studies

in mice confirm that RSC neurons can display evidence of

long-duration, persistent spatial memory engrams (Czajkowski

et al., 2014; Milczarek et al., 2018; de Sousa et al., 2019; Hattori

et al., 2019).

The RSC is also critical for spatial navigation (Maguire, 2001;

Epstein, 2008). Human case studies show that RSC damage

leads to disorientation in space in addition to memory impair-

ments (Bottini et al., 1990; Takahashi et al., 1997; Ino et al.,

2007; Osawa et al., 2007). Such patients can identify known

scenes or locations but are unable to extract any orientation

information from them and, thus, experience difficulties navi-

gating even familiar environments (Bottini et al., 1990; Takahashi

et al., 1997; Ino et al., 2007). A neuroimaging study identified the

coding of head direction (HD) information in the RSC while par-

ticipants navigated a novel virtual environment, suggesting that

visual cues of orientation are processed, in part, by the RSC

during navigation (Shine et al., 2016). Animal studies also report

encoding of spatial information within the RSC, including that of

HD, position, and turning behavior (Cho and Sharp, 2001; Alex-

ander and Nitz, 2015; Vedder et al., 2016; Mao et al., 2017,

2018; Miller et al., 2019).

How is the RSC uniquely suited to carry out these spatial

memory and navigation computations? This is a fundamental

but unsolved circuit input-output transformation problem. The

RSC receives prominent spatial and memory-related inputs

from the hippocampus, subicular complex, anterior thalamus,

secondary motor cortex, and visual cortex, as well as the contra-

lateral RSC (Van Groen and Wyss, 1990, 2003; Wyss and Van

Groen, 1992; Miyashita and Rockland, 2007). Recent studies

have started to document the functional nature of these inputs

to the RSC (Yamawaki et al., 2016, 2019a, 2019b; Sempere-Fer-

ràndez et al., 2018; Sempere-Ferràndez et al., 2019). However,

the precise properties of the RSC neuronal subtypes involved

(Wyss et al., 1990; Sugar et al., 2011; Kurotani et al., 2013) are

rarely studied in mice, and the local connectivity between RSC

subtypes is completely unknown. Although attractor network
or(s).
commons.org/licenses/by/4.0/).
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models of RSC incorporating generic neurons exist (Bicanski

and Burgess, 2016; Page and Jeffery, 2018), it is critical to

discover the key intrinsic and local synaptic properties that allow

the RSC to perform its specialized functions. Without this infor-

mation, it is impossible to develop biophysically realistic models

of RSC cells or circuits, which would, in turn, help to decipher the

exact coding schemes used by the RSC.

Here, we investigate the intrinsic physiology, local synaptic

connectivity, and computational abilities of cells within the

superficial layers of granular RSC (RSG). The majority of neu-

rons within this region are a distinct subtype of small, highly

excitable, non-adapting pyramidal neurons. We show that

these cells are excitatory but, surprisingly, rarely excite their

neighboring inhibitory or excitatory neurons. Instead, there is

prevalent local inhibition from fast-spiking (FS) layers 2/3

(L2/3) neurons onto these highly excitable neurons and be-

tween pairs of FS cells, highlighting a network dominated by

feedforward, not feedback, inhibition. We then use this informa-

tion to construct biophysically realistic computational models

of RSC cell types and investigate how they process realistic,

in vivo spike trains of incoming information. We find that these

hyperexcitable principal neurons in the RSG are optimally

suited to precisely and persistently encode the sustained HD

input they receive from the postsubiculum. A smaller popula-

tion of regular-spiking (RS) excitatory neurons in L2/3 show

pronounced adaptation and are unable to maintain such sus-

tained, high-frequency responses. Our results show that there

are two complementary coding strategies operating in parallel

in the superficial RSC.

RESULTS

Low-rheobase Cells Are Highly Excitable Neurons in the
Superficial RSG
We recorded from and parsed the intrinsic physiology of 193

cells in the superficial L2/3 of the mouse RSG. Consistent with
Figure 1. Low-rheobase Cells Represent a Distinct Highly Excitable Ce

(A) Intrinsic physiological properties of a fast-spiking (FS) neuron in the superficia

high-frequency trains of action potentials. Middle trace: a substantial delay to firs

zoomed-in view of the first spike in the middle trace. Bottom: injected current am

(B) Similar to (A), but now for a retrosplenial regular-spiking (RS) neuron. Note

regions.

(C) Similar to (A), but now for a retrosplenial low-rheobase (LR) neuron. Note the a

frequency adaptation.

(D) Left: representative traces from FS, RS, and LR cell action potentials overlaid t

spike widths are intermediate to those of neighboring FS and RS (p < 0.001 for e

(E) Average rheobase for FS, RS, and LR cells showing a markedly LR for LR ce

(F) Average input resistance (IR) for FS, RS, and LR cells showing a significantly

(G) Average input capacitance (IC) for FS, RS, and LR cells showing a markedly

(H) Bar graph of the average latency to first spike after onset of an at-threshold cu

p = 0.11).

(I) Bar graph showing the average spike frequency adaptation ratio for FS, RS, a

comparison).

(J) Frequency-current (F-I) curve for FS, RS, and LR neurons highlighting the hyp

(K and L) LR cells cluster clearly and separately from FS and RS cells when IC is

(M) Principal-component analysis results in three distinct clusters corresponding

single LR cluster.

Error bars represent standard error of the mean. Wilcoxon rank-sum test used fo

See also Figure S1 and Table S1.
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other cortical regions, FS interneurons were present in these

RSG layers (Figure 1A). FS cells were identified by their unique

spiking properties (Connors and Gutnick, 1990; Sempere-Fer-

ràndez et al., 2018), including narrow spike width and rapid,

sharp afterhyperpolarizations (AHPs). RS pyramidal neurons

were occasionally found, but far less often than in typical

neocortex (Figure 1B). A third population of cells was identified.

For reasons investigated and explained below, we refer to these

distinct neurons as low-rheobase (LR) cells. Detailed analyses of

physiological and intrinsic parameters revealed several distinct

properties of LR neurons. Statistical differences were calculated

using a two-tailed Wilcoxon rank-sum test for all intrinsic com-

parisons. LR spike widths were between those of FS and RS

cells (FS = 0.22 ± 0.05 ms, RS = 0.80 ± 0.04 ms, LR = 0.55 ±

0.02 ms; p < 0.001 for each comparison; Figure 1D; Table 1).

Additionally, these LR cells had significantly high input resis-

tance (402.35 ± 15.92 MU; p < 0.001), low input capacitance

(38.48 ± 1.33 pF; p < 0.001), and LR (40.45 ± 2.07 pA; p <

0.001), suggesting they are a class of highly excitable neurons

distinct from both FS and RS neurons (Figures 1E–1G; Table

1). LR cells did not differ significantly in latency to first spike

from FS (p = 0.09) or RS (p = 0.11) cells. LR cells also exhibited

minimal spike frequency adaptation (ratio of 1.26 ± 0.05), far

lower than the substantial spike frequency adaptation shown

by RS cells (ratio of 3.07 ± 0.46; p < 0.001), highlighting their po-

tential ability to fire trains of action potentials at high frequencies

with minimal adaptation (Figure 1I; Table 1). Further supporting

this, LR cells showed a dramatically higher slope in their fre-

quency-current relationship (Figure 1J). Additionally, 65% of

LR cells exhibited a pronounced afterdepolarization (ADP; Fig-

ure 1C) whereas the remaining 35% had no ADP (Table 1). The

presence of ADP did not otherwise distinguish the LR cells

from those where the ADP was absent. These LR groups did

not differ on key intrinsic properties, such as input capacitance,

rheobase, or input resistance (as verified using principal-compo-

nent analysis below).
ll Type in the Superficial Retrosplenial Cortex

l layers of the granular retrosplenial cortex. Top trace: ability to fire sustained

t spike after current onset during a near-threshold current step. Right inset is a

plitudes for the voltage responses shown above.

the spike frequency adaptation characteristic of RS neurons in other cortical

bility to fire sustained high-frequency trains of action potentials with little spike

o show differences in spike width. Right: average spike widths showing that LR

ach comparison).

lls compared to that of FS and RS (p < 0.001 for each comparison).

higher IR for LR cells [p < 0.001 for each comparison].

low IC for LR cells compared to FS and RS (p < 0.001 for each comparison).

rrent injection for FS, RS, and LR cells (LR versus FS, p = 0.09; LR versus RS,

nd LR cells showing lack of adaptation in FS and LR cells (p < 0.001 for each

erexcitability of LR neurons.

plotted against either rheobase (K) or spike half-width (L).

to LR, RS, and FS cells. LR cells with and without ADPs cluster together in a

r each of the statistical tests reported in this figure.



Table 1. Intrinsic Cell Properties Reveal That LRCells Have aDistinctly LowRheobase, High Input Resistance, Low Input Capacitance,

and Low Spike Frequency Adaptation, as Well as a Spike Width between Those of FS and RS Cells

FS RS LR

Values n Values n Values n

Postnatal age at time of recording (days) 25.93 ± 0.43 42 26.65 ± 0.52 26 27.37 ± 0.61 115

Resting potential (mV) �61.17 ± 0.88 42 �65.12 ± 0.96 26 �66.27 ± 0.64 115

Input resistance (MU) 64.68 ± 5.04 28 133.09 ± 11.37 18 402.35 ± 15.92 83

Input capacitance (pF) 118.83 ± 7.19 28 129.46 ± 11.99 18 38.48 ± 1.33 83

Membrane time constant (ms) 7.16 ± 0.58 28 15.35 ± 0.86 18 14.28 ± 0.37 83

Action potential threshold (mV) �40.73 ± 0.85 35 �40.93 ± 0.87 26 �40.83 ± 0.42 100

Action potential amplitude (mV) 56.86 ± 1.59 35 74.70 ± 2.39 26 64.29 ± 1.03 100

Action potential width (ms) 0.22 ± 0.05 35 0.80 ± 0.04 26 0.55 ± 0.02 100

Afterhyperpolarization amplitude (mV) 17.00 ± 0.54 35 9.74 ± 0.47 26 11.67 ± 0.31 (ADP) 65

9.88 ± 0.57 (no ADP) 35

Afterhyperpolarization latency (ms) 0.60 ± 0.02 35 25.71 ± 2.74 26 1.39 ± 0.09 (ADP) 65

9.25 ± 0.48 (no ADP) 35

Spike frequency adaptation ratio 0.92 ± 0.14 35 3.07 ± 0.46 26 1.26 ± 0.05 100

Latency to first spike (ms) 565.14 ± 54.29 31 411.54 ± 50.05 15 496.46 ± 17.71 80

Rheobase (pA) 363.70 ± 28.72 31 105.60 ± 9.62 15 40.45 ± 2.07 80

Values are mean ± SEM for each of the calculated intrinsic properties separated by cell group. Numbers are reported individually for each property for

each cell type. LR cells significantly differed from RS cells on the following measures: input resistance, input capacitance, spike width, spike frequency

adaptation ratio, and rheobase (p < 0.001). LR cells significantly differed from FS cells on the following measures: input resistance, input capacitance,

membrane time constant, spike width, AHP amplitude, and rheobase (p < 0.001). FS, fast-spiking; RS, regular-spiking; LR, low-rheobase. Related to

Figure S1 and Table S1.
To determine whether LR neurons are a truly distinct neuronal

subtype, we sought to identify the physiological properties that

can clearly distinguish them from other neurons in the superficial

RSG. Specifically, using features such as rheobase, input capac-

itance, and spikewidth, wewere able to isolate LR cells fromboth

FS and RS cells (Figures 1K and 1L). To further verify this clus-

tering among all features simultaneously, we conducted a prin-

cipal-component analysis (PCA). Upon plotting PC1 versus PC2

(which together account for 97.4%of the varianceacrossall cells),

the three cell groups clearly separated into three distinct clusters

(Figure 1M). To examine whether the presence or absence of

ADPs had any impact on LR classification, we labeled LRs with

and without ADPs in separate colors. Both of these groups clus-

tered together as part of the unified LRcluster, with no delineation

observedbetween them. This strongly supports the assertion that

LR neurons are one distinct cell type (Figure 1M).

LR Cells Are the Dominant Cell Type in the
Superficial RSG
LR neurons were the most commonly encountered cell type in

L2/3 of RSG. To quantify the relative percentage of neurons in

the superficial RSG, the recorded neurons were assigned to

one of four groups based on their intrinsic physiological proper-

ties: FS, RS, LR, and unclassified. The unclassified group con-

sisted of 10 neurons whose intrinsic and/or firing properties did

not fall under any of the three defined groups (see STAR

Methods). We found that LR cells are the dominant cell type in

both L2/3, accounting for 61% of the neurons in layer 2 and

59% in layer 3 (Figure 2). However, 0 out of 25 recordings in

layers 5 and 6 were of LR cells and instead identified only RS
and FS neurons, suggesting that LR neurons are restricted to

the superficial layers of RSG (chi-square test, p < 0.001; data

not shown). In the mouse lines with more than 20 cells recorded,

greater than 50% were LR neurons in each line, confirming that

LR cells are the dominant cell type in L2/3 of RSC regardless of

the mouse line. Surprisingly, the prevalence of RS cells in L2/3 of

RSGwas extremely low, representing only 26%of all layer 2 neu-

rons and 10% of layer 3 neurons. Indeed, the proportion of LR

neurons is significantly greater than that of RS neurons in L2/3

(chi-square test; p < 0.001). The FS neuron probabilities are

slightly skewed, as experiments detailed later in this manuscript

specifically targeted FS interneurons. Thus, the FS neuron prob-

ability reported here is likely slightly larger than their true repre-

sentation in these layers. Nonetheless, it is clear that LR cells

are the most prevalent cell type within the superficial layers of

the granular RSC, being encountered 4.4 times more often

than RS cells.

LR Cells Are Found across the Long Axis of the RSC
The RSC is a large structure, spanning 4.38mm rostracaudally in

mice. In addition to LR cells being the most prevalent cell type,

we also found that their expression is consistent across this

entire long axis of the RSC (Figure S1B; Table S1). This suggests

that the contribution of LR cells to retrosplenial circuit computa-

tions is likely to be similar across the long axis of the RSG.

LR Cells Are Found in Both Males and Females at All
Ages Examined
LR cells are present in both adolescent and adult mice, suggest-

ing this highly intrinsically excitable cell is not a transient
Cell Reports 30, 1598–1612, February 4, 2020 1601
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Figure 2. LR Cells Are the Dominant Cell

Type in L2/3 of the RSG

(A) Representative anatomy of the RSG and loca-

tions of a subset of patched neurons. The left panel

shows the location of the retrosplenial cortex su-

perior to the corpus callosum. Right panel shows a

differential interference contrast (DIC) image of a

retrosplenial mouse brain slice with RSD and RSG

separated by a black dotted line. The layers are

demarcated by white dotted lines. Small purple

triangles, large green triangles, and orange circles

denote patch locations of a representative pro-

portion of LR, RS, and FS cells patched in this

study, respectively. Scale bar represents 100 mm.

(B) Percentage of each neuronal subtype patched

in each layer of RSG. LR cells are the most preva-

lent cell type in each layer. UNC, unclassified. Layer

2: LR, n = 23; RS, n = 10; FS, n = 3; UNC, n = 2. Layer

3: LR, n = 92; RS, n = 16; FS, n = 39; UNC, n = 8.
developmental phenotype (Figure S1A). LR cells are also found

in both male and female mice (Figure S1C). The properties of

these neurons do not differ across these different locations,

ages, or sex, further supporting their robust existence as a single

cell type (Table S1). Thus, these neurons are the dominant cell

type in the superficial granular RSC, consistent across age,

sex, and long axis of the RSG.

LR Cells Are Excitatory
To investigate whether LR neurons were excitatory or inhibi-

tory, we next conducted whole-cell recordings coupled with

optogenetic activation of channelrhodopsin in CaMKIIa+ cells.

CaMKIIa-Cre 3 Ai32 mice (Jackson Laboratories, stock

numbers 005359 and 024109, respectively; crossed in house)

were used for these experiments. In these mice, cells containing

the excitatory marker CaMKIIa express Cre, thus allowing for

expression of a cre-dependent channelrhodopsin (ChR2) exclu-

sively in CaMKIIa neurons (Figure 3A). We then used 1-ms light

pulses in a 10-Hz train to test ChR2 responses in the patched

neurons. Of the LR cells tested, 85% (17/20) directly responded

to the optogenetic light pulse, indicating that they were directly

expressing ChR2 and, thus, were CaMKIIa positive (Figures 3B

and 3C). This suggested, but did not prove, that they may be

excitatory neurons.

We then confirmed the excitatory nature of LR cells by using

paired recordings of layer 2/3 RSG neurons. Although connec-

tions were rare, when LR cells were connected to neighboring

FS cells, they led to excitatory post-synaptic potentials (EPSPs)

in the paired cell (Figure 4D). This confirms that LR cells in RSG

are indeed excitatory neurons.

Dominant Inhibition and Rare Local Excitation in the
Superficial Layers of RSG
Using paired whole-cell recordings, we sought to quantify the

connectivity between these three major cell types in the superfi-

cial layers of RSG: LR andRS (both excitatory; E) and FS (thema-

jor inhibitory neurons in these layers; I). To our surprise, LR to FS

connectivity was rare (17%), suggesting a relative lack of locally

driven excitation of FS cells. On the other hand, FS cells were

frequently connected to and inhibited neighboring LR cells
1602 Cell Reports 30, 1598–1612, February 4, 2020
(52%) (Figure 4A). When all pairs were considered, the E/I con-

nectivity was only 16%, whereas the I/E connectivity reached

53% (Figure 4B). The difference in probability to observe I/E

connections versus E/I connections was significant (p <

0.001; two-tailed t test), suggesting the superficial layers of the

RSG represents an inhibition-dominated network, with feedfor-

ward inhibition far more likely than feedback inhibition. Addition-

ally, we observed no LR/LR connections (0/30), nor any

connectivity between LR and RS cells (0/6), indicating a com-

plete lack of E/E connectivity. FS/FS connectivity was

robust, being found in each of the 6 directions tested across

three pairs (100%; Figure 4A).

The latency to onset of the evoked responses from a holding

potential of �55 mV was similar between inhibition and excita-

tion (p = 0.9273, Wilcoxon rank-sum test; Figure 4E). However,

the peak of the EPSP from LR onto FS cells was reached signif-

icantly faster than the peak of IPSPs from FS to LR (p = 0.0091,

Wilcoxon rank-sum test; n = 3 LR to FS connections; n = 9 FS to

LR connections; Figure 4F). IPSPs from FS to LR cells exhibited

clear short-term depression. This was seen in paired recordings

(Figures 4C and 4G) and also when recording from LR neurons

during optogenetic stimulation of FS cells (data not shown).

EPSPs from LR to FS cells did not clearly exhibit either depres-

sion or facilitation (Figure 4D). The circuit diagram for L2/3 of

RSG is summarized in Figure 4H and highlights the prominent

role of inhibition in this circuit.

Axons from LR Cells Do Not Ramify Locally but Head to
Deeper Layers and toward the Corpus Callosum
The rarity of connections from LR neurons onto their neigh-

boring L2/3 cells suggested that LR axons have more distant

targets. To investigate the projections of the LR cells, we

used biocytin to fill cells for morphological consideration after

characterizing their physiological properties and created 3D re-

constructions of the neurons by using Neurolucida. Three

representative LR neurons whose cell body, dendrites, and

axons were sufficiently filled are shown in Figure 5. All filled

LR cells exhibited projections to the deeper layers of RSG (Fig-

ures 5F–5I). Axons often clearly entered and traveled within the

corpus callosum. Additionally, LR neurons (unlike FS cells) had
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(A) Schematic showing the experimental set-up.

Top panel: mouse indicating the genetic cross of

CaMKIIa-Cre (Jackson Laboratories, stock number

005359) and Ai32 (Jackson Laboratories, stock

number 024109; crossed in house). Bottom panel:

10-Hz optical light-emitting diode (LED) pulses

were delivered to a whole-cell-patched neuron in

L2/3 of RSG while their responses were recorded.

Scale bar represents 100 mm.

(B) Representative responses of an LR cell to 10-Hz

optical pulses. Left traces show all 10 optical pulses

(1 ms each) over the span of 1 s and the LR cell response. Right trace is a zoomed in view of the first optical pulse and resulting spike from the LR cell. The

almost instantaneous neuronal response to the light (<0.15-ms latency) is indicative of direct ChR2 expression.

(C) Percentage of LR cells tested that directly expressed ChR2 (85%, 17/20).
very few axonal ramifications within L2/3, matching their

extremely low likelihood to synapse onto local neurons (Figures

5F, 5G, and 5I). Upon further examination of our four paired re-

cordings in which LR cells directly excited the paired FS cell,

we noted that all of these LR cells were located more superfi-

cially than their paired FS cell. Conversely, of the four pairs in

which the FS cell was located more superficial to the LR cell,

none exhibited connections from the LR to the FS cell. This

supports the finding that LR axons immediately travel to deeper

areas and do not ramify locally or superficial to their cell bodies.

It also suggests that FS cells in L2, even more so than L3 FS

cells, are likely to be completely devoid of local excitation

from LR cells.

Because LR neurons are pyramidal, we also sought to

compare their morphology to neighboring pyramidal RS neurons

(Figure 5A), which exhibit extremely different electrophysiolog-

ical properties. Sholl analysis revealed distinct dendritic mor-

phologies of the two pyramidal cell types, with RS neurons

having significantly more intersections up to 150 mm from the

soma (Figure 5B). To further investigate these differences, we

measured key morphological characteristics and found that RS

cells were indeed significantly larger than LR neurons, having

larger cell bodies, longer dendrites, and a greater number of den-

dritic branches (Figures 5C, 5D,and 5E). These morphological

differences betweenRS and LR cells reinforce their physiological

differences and further support the characterization of LR cells

as a distinct cell type.

LRNeurons Support High-Fidelity, SustainedResponses
to Persistent HD Inputs
We next created biophysically realistic models of both RS and

LR cells (see STAR Methods). The morphology of both the RS

and LR neuron models were based on anatomical reconstruc-

tions of their experimental counterparts (Figures 6A and 6E).

Experimental physiological properties were accurately repro-

duced in each model (Figures 6B and 6F), with the LR neuron

model having a higher input resistance, minimal spike frequency

adaptation, and narrower spike width than the RS neuron model

(Figures 6C and 6G). Frequency-current responses and latency-

current response of the neuron models also closely corre-

sponded to the experimental data for each neuronal subtype

(Figures 6D and 6H).
We then used these biophysically realistic models to under-

stand the information processing capabilities of LR versus RS

neurons. The subdivisions of the subicular complex provide

some of the most prominent sources of input to the superficial

layers of the RSC (Wyss and Van Groen, 1992; Van Groen and

Wyss, 2003; Yamawaki et al., 2019a). Many cells in the postsu-

biculum fire selectively when an animal is facing a particular di-

rection and are, hence, called HD cells (Taube et al., 1990).

These postsubicular HD cells are bursty, firing a series of rapid

spikes at rates of 100–250 Hz (Funahashi and Stewart, 1997;

Peyrache et al., 2015). The same postsubicular HD cells also

fire long-duration, persistent trains of action potentials (Taube

and Bassett, 2003; Yoshida and Hasselmo, 2009; Peyrache

et al., 2015). This persistent firing is thought to be critical for

maintaining a sense of orientation when the animal is not moving

but instead continuously facing a particular direction (Taube and

Bassett, 2003; Yoshida and Hasselmo, 2009; Peyrache et al.,

2015).

We sequentially examined how these important properties

of postsubicular inputs are processed by RS versus LR neu-

rons. First, 200-Hz bursts consisting of 5 spikes were input

into both RS and LR cell models (Figures 7A and 7B). The

RS cell response to each of the constituent spikes within the

burst was characterized by a low probability of firing and

imprecisely timed action potentials (high jitter). LR cells, on

the other hand, responded with high reliability and more pre-

cisely timed action potentials with little jitter across trials (Fig-

ures 7C–7F), as would be expected based on their much

higher input resistance. LR cell spikes were significantly

more reliable and more precise (less jitter) than RS cell spikes

in response to the burst input (p < 0.001; two-tailed t test),

showing that LR neurons are capable of higher fidelity burst

encoding with superior spike timing coding capabilities than

their neighboring RS neurons. Qualitatively similar results

were obtained when the gmax of synaptic inputs was halved

in strength (data not shown).

We next examined the ability of LR and RS neurons to

respond to persistent inputs of varying durations. First, we uti-

lized a continuous input spike train of 200 Hz over progres-

sively longer durations. LR cells were able to respond with

high probability and high precision for all durations examined

(Figure 7G). RS cells, on the other hand, had average
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Figure 4. Dominant Local Inhibition in the Superficial Layers of the

Retrosplenial Cortex

(A) Table indicating the percentage of connectivity between all types of pairs

tested. The heatmap indicates the probability of connections between the

neuron types indicated in each cell of the table.

(B) Total connectivity probability between all I/I directional pairs (100%), I/E

directional pairs (52%), E/I directional pairs (16%), and E/E directional

pairs (0%). Bootstrap resampling followed by a t test revealed a significantly

higher likelihood of observing I/E connections versus E/I connections

(p < 0.001).

(C) Representative trace of the connection between a presynaptic L3 FS cell

and a postsynaptic L3 LR cell (held at�55mV). The neurons were 27 mmapart,

with the LR cell located superficial to the FS cell. Schematic shows the patched

pair in which the FS cell is being stimulated to spike at 10 Hz, with postsynaptic

potentials recorded in the LRcell. The purple trace is the response of the LR cell

to a 10-Hz sequence of FS cell spikes (indicated by orange arrows).

(D) Similar to (C), but now for a presynaptic LR to postsynaptic FS excitatory

connection.

(E) Average latency to onset of the IPSPs recorded from the FS/LR pairs (red)

and the EPSPs recorded from the LR/FS pairs (blue) (p = 0.9273, Wilcoxon

rank-sum test). Error bars represent standard error.
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response probabilities under 0.45, even when we removed the

adaptation current from the RS cell model. Signal-to-noise ra-

tio (SNR) analyses (see STAR Methods) showed that the LR

cell response was characterized by high SNR to prolonged

200-Hz inputs (Figure 7H). RS cells, with and without adapta-

tion, showed several fold lower SNR for both short and long

durations (Figure 7H). The ratio of SNR for LR response

(SNRLR) to SNR for RS response (SNRRS) progressively

increased at higher input durations (Figure 7H, inset), indi-

cating the progressive failure of RS cells to reliably encode

longer duration inputs with enough spikes. When we removed

the adaptation current from the RS cell model, the ratio SNRLR

to SNR for the RS model without adaptation (SNRRS-No-Adap)

remained very high but did not progressively increase as a

function of increasing input durations (Figure 7H, inset), indi-

cating that the spike frequency adaptation of RS neurons pre-

vents reliable transmission of long duration, persistent inputs

to its postsynaptic targets. These results suggest that a com-

bination of passive and active properties enables LR neurons

to have higher fidelity, sustained SNR at high input durations.

The spike frequency adaptation of RS neurons amplifies the

SNR disadvantage of RS neurons at longer durations. The

SNR results held true even when we increased the stimulation

frequency of background synaptic inputs to 10 or 20 Hz (Fig-

ure S2), suggesting our results were robust to variations in

these model parameters.

Finally, we validated our models’ predictions by utilizing real-

istic input spike trains recorded from HD cells in the postsubicu-

lum (Figure 7I; Peyrache and Buzsaki, 2015). As expected, this

dataset included epochs of persistent, long-duration firing

when the animal faced a given cell’s preferredHD. A typical post-

subicular neuron had an intra-burst frequency of�100Hz, based

upon the inter-spike-interval (ISI) histogram (Figure S3A). The LR

neuron model exhibited a higher probability of firing and greater

spike timing precision than the RS neuron model when stimu-

lated with spike trains corresponding to this peak firing rate in

this dataset, further affirming the superior encoding capabilities

of the LR neuron model (Figures S3B–S3D). We found that LR

neurons encoded this postsubiculum HD input with higher

SNR at all input durations. The ratio of SNRLR to SNRRS again

increased dramatically at higher input durations (when the ani-

mal faced the same direction for long periods of time; Figure 7J),

indicating the inability of RS neurons to faithfully encode persis-

tent, long duration inputs coming from the postsubicular HD

cells.

LR and RS neurons are characterized by different dendritic

morphologies and branching patterns in terms of number of

branches and total branch length (Figures 5B–5D). As a result,

synaptic inputs can undergo differential filtering, as inputs
(F) Average latency to peak of the IPSPs recorded from the FS/LR pairs (red)

and the EPSPs recorded from the LR/FS pairs (blue) (p = 0.009, Wilcoxon

rank-sum test). Error bars represent standard error.

(G) Group synaptic dynamics for FS/LR connections (n = 9). Inhibition onto

LR cells exhibited strong short-term depression.

(H) Schematic of the microcircuitry of FS, RS, and LR cells in the superficial

layers of RSG.
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Figure 5. LR Axons Do Not Ramify Locally and Instead Project to Deeper Layers and the Corpus Callosum

(A) Fluorescent fills and subsequent Neurolucida reconstructions of an example RS (green) and LR (purple) neuron. Scale bar represents 50 mm.

(B) Sholl analysis of the total dendrites of RS (green) and LR (purple) neurons in L2/3 of RSG (*p < 0.05; **p < 0.01; Wilcoxon rank-sum test).

(C) Total length of dendrites for RS (green) and LR (purple) neurons (**p < 0.01, Wilcoxon rank-sum test).

(D) Same as (C) for number of dendritic branches (**p < 0.01, Wilcoxon rank-sum test).

(E) Same as (C) for soma surface area (**p < 0.01, Wilcoxon rank-sum test).

(F) Schematic of the axonal ramifications of two L2/3 LR neurons. Top left shows the location of the RSCwithin the�1.8-mmAP slice in a P25mouse. Layers and

corpus callosum are demarcated by gray dashed lines. Scale bar represents 50 mm. Dendrites are in black, and cell bodies/axons are in purple. Axons project

clearly to deeper layers, often entering the corpus callosum.Minimal axonal ramifications are observed in L2/3. Inset is identical to that in Figure 1Lwith the two LR

cells referenced here in larger purple dots, indicated by the arrows.

(legend continued on next page)
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Figure 6. Computational Models of LR and

RSNeurons Accurately Replicate the Physio-

logical and Morphological Properties of the

Respective Neuronal Subtypes

(A) Morphology of the corresponding RS neuron

model. Scale bar represents 50 mm.

(B) Response of the RS neuron model to a low

(50 pA) and high (400 pA) current injection.

(C) Left: IR of the RS neuron model (green; 148 MU)

compared to the average IR of the physiologically

recorded RS cells (gray; 133.09 MU). Right: spike

width of the RS neuron model (green; 0.92 ms)

compared to the average spike width of the physi-

ologically recorded RS cells (gray; 0.80 ms).

(D) Left: similar F-I relationships for the model

(green) and physiologically recorded (gray) RS cells.

Right: latency to first spike-current (L-I) relationship

for the model (green) and physiologically recorded

(gray) RS cells.

(E) Morphology of the LR neuron model. Scale bar

represents 50 mm.

(F) Modeled LR cell response to a low (50 pA) and

high (400 pA) current injection.

(G) Left: IR of the LR neuronmodel (purple; 384MU)

compared to the average IR of the physiologically

recorded LR cells (gray; 402.35 MU). Right: spike

width of the LR neuron model (purple; 0.55 ms)

compared to the average spike width of the physi-

ologically recorded LR cells (gray; 0.55 ms).

(H) Left: similar F-I relationship for the model (pur-

ple) and physiologically recorded (gray) LR cells.

Right: L-I relationship for the model (purple) and

physiologically recorded (gray) LR cells.

See also Table S2.
arriving at apical portions of the dendritic tree are filtered more at

the soma than proximal inputs (Häusser, 2001). To ensure that

the differences in SNR between the LR and RS neuron models

are not due to their differential dendritic filtering properties, we

normalized the synaptic inputs such that their location depen-

dence was eliminated. Even after normalizing the synaptic in-

puts, the LR neuron model had superior SNR compared to the

RS neuron model, and the difference became larger when the

input duration was increased (Figure S4A). The same result

was observed when the two models were stimulated with real-

istic in vivo input spike trains (Figure S4B). These results indicate

that SNRdifferences between the two neuronal subtypes are pri-

marily due to differences in their intrinsic properties and not due

to morphological differences. Thus, LR neurons are better suited

to encode persistent inputs, such as those involved in long-dura-

tion HD signaling, than RS neurons.
(G) Biocytin fill used to create the schematic in (F). Arrows are placed periodicall

(H) Zoomed in view of the box indicated in (F). Left shows a schematic of the

callosum. Right shows biocytin fill image. Arrows are placed periodically along th

(I) Fluorescent fill of an LR cell with axonal projection to the corpus callosum. Arro

layers. Scale bar represents 100 mm.
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DISCUSSION

The unique cytoarchitecture of the RSC has long been appreci-

ated by neuroanatomists (Rose, 1927; Van Groen and Wyss,

2003; Wyss et al., 1990; Wyss and Van Groen, 1992; Ichinohe

and Rockland, 2002). The granular division of the RSC, in partic-

ular, has two geometric features that appear to set it apart from

many other cortical regions: (1) small pyramidal neurons that

cluster most densely in L2/3 (Wyss et al., 1990; Kurotani et al.,

2013) and (2) the bundling of apical dendrites emanating from

these small L2/3 pyramidal neurons (Wyss et al., 1990; Ichinohe

and Rockland, 2002). Thus, a thorough understanding of gran-

ular RSC function would greatly benefit from an in-depth under-

standing of these distinct L2/3 neurons.

Here, we have characterized the detailed intrinsic properties,

connectivity, and computational capabilities of these small
y along the axon for visualization. Scale bar represents 50 mm.

axon projecting through L5/6 before entering and traveling within the corpus

e axon for visualization. Scale bar represents 50 mm.

ws are used to visualize the projecting axon and minor ramifications in deeper
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pyramidal cells, as well as their neighboring, larger, more familiar

RS cells, revealing a number of key differences. We call these

small pyramidal cells LR neurons based upon the ease with

which they can be excited and made to fire (due, in large part,

to their high input resistance). In addition to their high excitability,

these cells also have spike widths that are much narrower than

RS cells and show minimal spike frequency adaptation, again

in sharp contrast to RS neurons (Figure 1; Table 1). We also

found that all three cell types examined had a tendency to spike

late during a near threshold current injection, consistent with

high levels of Kv1.1 or Kv1.2 ion channel expression in the

RSC (Kurotani et al., 2013). There was no significant difference

in the first spike latency of LR versus RS cells (Figure 1; Table

1). Thus, the key, defining computational features of LR cells

are their hyperexcitability and lack of spike frequency

adaptation.

How do the distinct passive and active properties of LR versus

RS neurons impact their input-output transformations and infor-

mation-coding capabilities? We used biophysically realistic

models to investigate this question. On the short timescale, the

higher excitability and shorter spike widths of LR cells enable

them to spike with a higher probability and lower jitter in

response to incoming bursts of spikes (Figures 7A–7F), such

as those generated by afferent postsubicular cells during active

behaviors (Simonnet and Brecht, 2019). On the long timescale,

the almost complete lack of spike frequency adaptation helps

LR cells maintain sustained (and still precise) responses to

incoming persistent inputs (Figures 7G–7J). This encoding of

persistent information appears critical to the function of the

RSC. Recent imaging evidence suggests that RSC neurons

(generically defined, irrespective of subtype) have a unique abil-

ity to encode long-duration, history-dependent value signals

(Hattori et al., 2019). Of even more direct relevance is the persis-

tent nature of the navigational information being processed by

the superficial RSC. The subicular complex, including the post-

subiculum, represents one of the key functional inputs to RSC

L2/3 cells (Wyss and Van Groen, 1992; Yamawaki et al.,

2019b, 2019a). Postsubicular neurons display a strong prefer-

ence for particular orientations and are, thus, called HD cells
Figure 7. Unique Properties of LR Neurons Enable High-Fidelity, Susta

(A) Top: schematic of a 200-Hz, 5-spike burst input to the RS neuron model. Botto

burst input across 300 trials.

(B) Top: similar to (A), but now for the LR neuron model.

(C) Raster plot of the firing of RS and LR neuron models in response to the burst in

timing precision, whereas the LR model fires with high reliability and high spike t

(D) Distribution of spike latencies of the RS (green) and LR (purple) models for all fiv

(E) Output spike probability of the RS (green) and LR (purple) models to each individ

responding to each spike within the burst compared to the RS model (***p < 0.0

(F) Spike timing precision computed as the jitter in the output spikes for the RS (g

model is characterized by high spike timing precision compared to the RS mode

(G) Output spike probability of the LRmodel and two RSmodels (a standardmode

of input spike number for a 2-s continuous stimulation. Note the diminished spike

(H) Signal-to-noise ratio (SNR) of RS (with and without spike frequency adaptation

represents the ratio of SNR of the LR neuron model to the SNR of the two RS ne

(I) Schematic of in vivo head-direction input from the postsubiculum to the modele

input postsubiculum head-direction cell.

(J) Same as (H), but now in response to realistic in vivo spike trains of the postsubic

head-direction inputs with high SNR.

See also Figures S2, S3, and S4.
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(Taube et al., 1990). When an animal faces a particular direction

for long durations, postsubiculum HD cells keep spiking persis-

tently, likely contributing to the maintenance of the sense of

orientation in the absence of ongoing vestibular changes (Taube

et al., 1990; Yoshida and Hasselmo, 2009). The distinct proper-

ties of LR cells suggest they are ideally suited to respond to this

persistent postsubicular input (Figures 7I and 7J), enabling the

retrosplenial circuit to utilize this valuable HD input to help

generate a sense of orientation regardless of how long an animal

has been facing the same direction. In fact, our results suggest

that the longer an animal faces a postsubicular cell’s preferred

direction, the better the SNR with which LR neurons can encode

this information (due to the accumulation of high-rate signal

spikes over time), potentially helping to increase the behavioral

certainty of the current orientation and helping to recall orienta-

tion-relevant memories. Indeed, a sense of spatial disorientation

is one of the key deficits after RSC damage in humans (Bottini

et al., 1990; Takahashi et al., 1997; Ino et al., 2007; Osawa

et al., 2007).

Several lines of future work are needed to better understand

LR versus RS neuronal processing in support of RSC function.

It is not yet known whether postsubicular cells differentially con-

tact LR versus RS cells. Nor do we yet know the short-term dy-

namics of postsubicular inputs to LR versus RS cells. Perhaps

the single most important gap in the field’s knowledge regarding

L2/3 RSC neurons is the lack of any information on their in vivo

spike patterns and how their firing encodes navigation andmem-

ory-related information. No in vivo awake, behavioral recordings

to date have specifically attempted to precisely target L2/3 of the

granular RSC, likely due to its relatively inaccessible position at

the midline. Our precise characterization of differences in spike

width and adaptation between LR and RS neurons will help the

field to identify these distinct neurons by using precisely planned

extracellular recordings.

The presence of two distinct, neighboring principal neurons is

seen in several structures that are important for spatial naviga-

tion and memory. Recent work has shown that granule and

mossy cells in the dentate gyrus differentially encode spatial in-

formation (Scharfman, 1992, 2019; GoodSmith et al., 2017;
ined Encoding of Persistent Head-Direction Input

m: membrane potential traces of the RS neuron in response to first spike of the

put. The RSmodel response is characterized by low reliability and lack of spike

iming precision.

e spikes within the burst input, highlighting the precise timing of LR responses.

ual spike within the burst. The LRmodel has a significantly higher probability of

01, Pearson chi-square test).

reen) and LR (purple) models to each individual spike within the burst. The LR

l (***p < 0.001, two-tailed t test).

l and a second RS-like model without spike frequency adaptation) as a function

probability on both RS models, compared to the highly reliable LR responses.

) and LR neuronmodels as a function of the duration of the input stimulus. Inset

uron models.

d RS and LR neurons. Polar plot shows the in vivo head-direction tuning of the

ulum head-direction cell shown in (I). LR, but not RS, neurons encode persistent



Senzai and Buzsáki, 2017), resolving several previously

confusing data points regarding the nature of the sparse code

used by granule cells (Leutgeb et al., 2007). Similarly, neigh-

boring deep versus superficial CA1 pyramidal cells have been

shown to have differential spatial and temporal firing properties,

as well as distinct local and distant connectivity (Mizuseki et al.,

2011; Lee et al., 2014; Danielson et al., 2016; Soltesz and Lo-

sonczy, 2018). In the subiculum, the cells show two distinct pat-

terns of bursting as well as differences in VGlut1 versus VGlut2

expression (Simonnet and Brecht, 2019; Yamawaki et al.,

2019a). Thus, the notion of parallel coding schemes imple-

mented by distinct populations of principal neurons is of clear

importance in regions involved in memory and navigation. In

the superficial RSC, our results show that such parallel neural co-

des are likely to be implemented by the distinct properties of LR

and RS neurons. The intrinsic properties of LR and RS cells are

likely to make them better suited to encode persistent versus

rapidly changing inputs, respectively. We, thus, hypothesize

that RS cells in L2/3 of RSG are likely to better encode informa-

tion during active head rotations and movement, whereas LR

cells may be better suited to integrating long-duration persistent

HD and position information when the animal is not moving (as

shown in Figure 7). Indeed, our results predict that the longer

an animal faces a particular direction, the higher the SNR with

which LR neurons can encode this information. Thus, LR neu-

rons may contribute heavily to retaining the current directional

bearing when initiating the next movement. In addition to the

postsubiculum, the RSC receives inputs from several other re-

gions, including directional information from the anterior thal-

amus (Taube, 1995; Peyrache et al., 2015) and positional and

route-based information from the dorsal subiculum and posterior

parietal cortex (Sharp and Green, 1994; Sharp, 1999; Nitz, 2006;

Kim et al., 2012; Stewart et al., 2013; Wilber et al., 2014; Cullen

and Taube, 2017; Olson et al., 2017; Simonnet and Brecht,

2019). Regardless of the precise content of the information being

conveyed by these sources, our results indicate the LR neurons

are more suited to integrating this information over longer time-

scales, potentially helping the RSC encode a sense of long-dura-

tion spatial orientation and bearing—a sense that manifests itself

as confidently knowing where one is and which way one is

looking.

Our paired recordings provide direct proof that LR neurons

are indeed excitatory (Figures 3 and 4). Although LR cells are

the most prevalent cell type in L2/3 (Figure 2), they make few

local connections (Figure 4), instead sending their axons into

the deeper layers and corpus callosum (Figure 5). LR cells

receive prominent inhibitory inputs from the neighboring

L2/3 FS cells (Figure 4), with the probability of FS-to-LR

connectivity reaching 52%, which is somewhat higher

than that reported in many other regions of the neocortex

(Beierlein et al., 2003; Yoshimura and Callaway, 2005; Packer

and Yuste, 2011; Jiang et al., 2015). This finding, coupled

with the complete lack of local excitatory connections

onto LR cells (Figure 4) and the dense FS-FS connectivity

(Figure 4), indicates that the superficial layers of the RSG

are a network dominated by local inhibition. The inhibition

from FS to LR neurons showed similar short-term depression

to that seen from FS to RS cells in many other cortical
structures (Figure 4G; Beierlein et al., 2003). Our study had

a low number of RS-FS pairs sampled, and their connectivity

will be precisely quantified in future work. Although we did

not explicitly model feedforward inhibition in our simulations,

this depression is likely to further aid in the long-duration

firing of LR neurons in response to persistent postsubicular

inputs by curtailing the strength of feedforward inhibition

over time. Of importance to network computations, the

strong FS-FS and FS-LR connectivity is also likely to allow

the RSC circuit to implement high-frequency oscillations

that are generated by the interneuron-gamma (ING) mecha-

nism, instead of, or in addition to, oscillations generated

by the pyramidal-ING (PING) mechanism (Koike et al., 2017;

Alexander et al., 2018). Future large-scale circuit models

of the superficial RSC incorporating LR, RS, and FS cells

based on the intrinsic properties and connectivity principles

described here will help us to understand the network compu-

tations performed by this unique retrosplenial circuit

(Figure 4H).
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Tonic inhibition enhances fidelity of sensory information transmission in the

cerebellar cortex. J. Neurosci. 32, 11132–11143.

Epstein, R.A. (2008). Parahippocampal and retrosplenial contributions to hu-

man spatial navigation. Trends Cogn. Sci. 12, 388–396.

Erisir, A., Lau, D., Rudy, B., and Leonard, C.S. (1999). Function of specific K(+)

channels in sustained high-frequency firing of fast-spiking neocortical inter-

neurons. J. Neurophysiol. 82, 2476–2489.

Fuhrmann, G., Markram, H., and Tsodyks, M. (2002). Spike frequency adapta-

tion and neocortical rhythms. J. Neurophysiol. 88, 761–770.

Funahashi, M., and Stewart, M. (1997). Presubicular and parasubicular cortical

neurons of the rat: functional separation of deep and superficial neurons

in vitro. J. Physiol. 501, 387–403.

Goldberg, E.M., Clark, B.D., Zagha, E., Nahmani, M., Erisir, A., and Rudy, B.

(2008). K+ channels at the axon initial segment dampen near-threshold excit-

ability of neocortical fast-spiking GABAergic interneurons. Neuron 58,

387–400.

Golomb, D., Donner, K., Shacham, L., Shlosberg, D., Amitai, Y., and Hansel, D.

(2007). Mechanisms of firing patterns in fast-spiking cortical interneurons.

PLoS Comput. Biol. 3, e156.

GoodSmith, D., Chen, X., Wang, C., Kim, S.H., Song, H., Burgalossi, A., Chris-

tian, K.M., and Knierim, J.J. (2017). Spatial Representations of Granule Cells

and Mossy Cells of the Dentate Gyrus. Neuron 93, 677–690.e5.

Guan, D., Tkatch, T., Surmeier, D.J., Armstrong, W.E., and Foehring, R.C.

(2007). Kv2 subunits underlie slowly inactivating potassium current in rat

neocortical pyramidal neurons. J. Physiol. 581, 941–960.

Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N., and Komiyama, T. (2019).

Area-Specificity and Plasticity of History-Dependent Value Coding During

Learning. Cell 177, 1858–1872.e15.

Häusser, M. (2001). Synaptic function: dendritic democracy. Curr. Biol. 11,

R10–R12.

Heilman, K.M., and Sypert, G.W. (1977). Korsakoff’s syndrome resulting from

bilateral fornix lesions. Neurology 27, 490–493.

Henseler, J., Ringle, C.M., and Sinkovics, R.R. (2009). The use of partial least

squares path modeling in international marketing. In New Challenges to Inter-

national Marketing (Advances in International Marketing, Vol. 20), R. Sinkovics

and P. Ghauri, eds. (Emerald Group Publishing), pp. 277–319.

Hille, B. (2001). Ion Channels of Excitable Membranes, Third Edition (Sinauer

Associates).

Hines, M.L., and Carnevale, N.T. (2001). NEURON: a tool for neuroscientists.

Neuroscientist 7, 123–135.

Hodgkin, A.L., and Huxley, A.F. (1952). A quantitative description ofmembrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544.

Ichinohe, N., and Rockland, K.S. (2002). Parvalbumin positive dendrites co-

localize with apical dendritic bundles in rat retrosplenial cortex. Neuroreport

13, 757–761.

Ino, T., Doi, T., Hirose, S., Kimura, T., Ito, J., and Fukuyama, H. (2007). Direc-

tional disorientation following left retrosplenial hemorrhage: a case report with

fMRI studies. Cortex 43, 248–254.

Ironside, R., and Guttmacher, M. (1929). The corpus callosum and its tumours.

Brain 52, 442–483.

Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel, S.,

and Tolias, A.S. (2015). Principles of connectivity among morphologically

defined cell types in adult neocortex. Science 350, aac9462.

Katche, C., Dorman, G., Slipczuk, L., Cammarota, M., andMedina, J.H. (2013).

Functional integrity of the retrosplenial cortex is essential for rapid consolida-

tion and recall of fear memory. Learn. Mem. 20, 170–173.

Keene, C.S., and Bucci, D.J. (2008). Contributions of the retrosplenial and pos-

terior parietal cortices to cue-specific and contextual fear conditioning. Behav.

Neurosci. 122, 89–97.

http://refhub.elsevier.com/S2211-1247(19)31758-9/sref1
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref1
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref2
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref2
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref3
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref3
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref3
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref4
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref4
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref4
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref5
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref5
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref5
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref6
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref6
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref7
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref7
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref7
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref8
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref8
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref9
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref9
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref10
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref10
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref11
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref11
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref11
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref12
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref12
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref13
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref13
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref13
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref13
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref14
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref14
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref14
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref15
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref15
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref15
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref15
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref16
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref16
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref16
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref17
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref17
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref17
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref18
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref18
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref19
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref19
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref19
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref20
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref20
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref21
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref21
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref21
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref22
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref22
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref22
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref22
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref23
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref23
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref23
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref24
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref24
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref24
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref25
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref25
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref25
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref26
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref26
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref26
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref27
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref27
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref28
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref28
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref29
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref29
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref29
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref29
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref30
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref30
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref31
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref31
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref32
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref32
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref32
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref33
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref33
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref33
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref34
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref34
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref34
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref35
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref35
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref36
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref36
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref36
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref37
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref37
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref37
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref38
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref38
http://refhub.elsevier.com/S2211-1247(19)31758-9/sref38


Kim, S.M., Ganguli, S., and Frank, L.M. (2012). Spatial information outflow from

the hippocampal circuit: distributed spatial coding and phase precession in

the subiculum. J. Neurosci. 32, 11539–11558.

Koga, K., Li, X., Chen, T., Steenland, H.W., Descalzi, G., and Zhuo, M. (2010).

In vivo whole-cell patch-clamp recording of sensory synaptic responses of

cingulate pyramidal neurons to noxious mechanical stimuli in adult mice.

Mol. Pain 6, 62.

Koike, B.D.V., Farias, K.S., Billwiller, F., Almeida-Filho, D., Libourel, P.-A.,

Tiran-Cappello, A., Parmentier, R., Blanco, W., Ribeiro, S., Luppi, P.-H., and

Queiroz, C.M. (2017). Electrophysiological evidence that the retrosplenial cor-

tex displays a strong and specific activation phased with hippocampal theta

during paradoxical (REM) sleep. J. Neurosci. 37, 8003–8013.

Kurotani, T., Miyashita, T., Wintzer, M., Konishi, T., Sakai, K., Ichinohe, N., and

Rockland, K.S. (2013). Pyramidal neurons in the superficial layers of rat retro-

splenial cortex exhibit a late-spiking firing property. Brain Struct. Funct. 218,

239–254.

Lee, S.-H., Marchionni, I., Bezaire, M., Varga, C., Danielson, N., Lovett-Barron,

M., Losonczy, A., and Soltesz, I. (2014). Parvalbumin-positive basket cells

differentiate among hippocampal pyramidal cells. Neuron 82, 1129–1144.

Leutgeb, J.K., Leutgeb, S., Moser, M.-B., and Moser, E.I. (2007). Pattern Sep-

aration in the Dentate Gyrus and CA3 of the Hippocampus. Science 315,

961–966.

Liu, P.W., and Bean, B.P. (2014). Kv2 channel regulation of action potential

repolarization and firing patterns in superior cervical ganglion neurons and hip-

pocampal CA1 pyramidal neurons. J. Neurosci. 34, 4991–5002.

Liu, Y.H., and Wang, X.J. (2001). Spike-frequency adaptation of a generalized

leaky integrate-and-fire model neuron. J. Comput. Neurosci. 10, 25–45.

Locke, R.E., and Nerbonne, J.M. (1997). Role of voltage-gated K+ currents in

mediating the regular-spiking phenotype of callosal-projecting rat visual

cortical neurons. J. Neurophysiol. 78, 2321–2335.

Maguire, E.A. (2001). The retrosplenial contribution to human navigation: a re-

view of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238.

Mao, D., Kandler, S., McNaughton, B.L., and Bonin, V. (2017). Sparse orthog-

onal population representation of spatial context in the retrosplenial cortex.

Nat. Commun. 8, 243.

Mao, D., Neumann, A.R., Sun, J., Bonin, V., Mohajerani,M.H., andMcNaughton,

B.L. (2018). Hippocampus-dependent emergence of spatial sequence coding in

retrosplenial cortex. Proc. Natl. Acad. Sci. USA 115, 8015–8018.

Martina, M., and Jonas, P. (1997). Functional differences in Na+ channel gating

between fast-spiking interneurones and principal neurones of rat hippocam-

pus. J. Physiol. 505, 593–603.

Marx, M., G€unter, R.H., Hucko, W., Radnikow, G., and Feldmeyer, D. (2012).

Improved biocytin labeling and neuronal 3D reconstruction. Nat. Protoc. 7,

394–407.

Milczarek, M.M., Vann, S.D., and Sengpiel, F. (2018). Spatial Memory Engram

in the Mouse Retrosplenial Cortex. Curr. Biol. 28, 1975–1980.e6.

Miller, A.M.P., Mau, W., and Smith, D.M. (2019). Retrosplenial Cortical Repre-

sentations of Space and Future Goal Locations Develop with Learning. Curr.

Biol. 29, 2083–2090.e4.

Miyashita, T., and Rockland, K.S. (2007). GABAergic projections from the hip-

pocampus to the retrosplenial cortex in the rat. Eur. J. Neurosci. 26, 1193–

1204.

Mizuseki, K., Diba, K., Pastalkova, E., and Buzsáki, G. (2011). Hippocampal
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Sempere-Ferràndez, A., Andrés-Bayón, B., and Geijo-Barrientos, E. (2018).

Callosal responses in a retrosplenial column. Brain Struct. Funct. 223, 1051–

1069.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Sodium bicarbonate Fisher Chemical Cat#S233

Fluriso VetOne Cat#501017

Sodium chloride Fisher Chemical Cat#S571

Sodium phosphate monobasic Sigma Cat#S5011

Potassium chloride Fisher Chemical Cat#P217

Dextrose Sigma Cat#D9434

Sucrose Sigma Cat#S7903

Calcium chloride dihydrate Sigma Cat#C5080

Magnesium sulfate heptahydrate Sigma Cat#M5921

D-Gluconic acid solution Sigma Cat#G1951

Potassium hydroxide Sigms Cat#P5958

HEPES Sigma Cat#H3375

EGTA Sigma Cat#E3889

GTP sodium salt hydrate Sigma Cat#G8877

Phosphocreatine di(tris) salt Sigma Cat#P1937

ATP magnesium salt Sigma Cat#A9187

Biocytin Sigma Cat#B4261

Paraformaldehyde Acros Cat#41678

Paraformaldehyde 32% solution Electron Microscopy Sciences Cat#15714

Sodium phosphate monobasic monohydrate Fisher Scientific Cat#S369

Sodium phosphate dibasic anhydrous Fisher Scientific Cat#S375

Vectastain Elite ABC Kit, Peroxidase Vector laboratories Cat#PK-6100

SIGMAFAST 3,30-Diaminobenzidine tablets Sigma Cat#D4168

Mowiol Sigma Cat#81381

Triton X-100 Sigma Cat#X100

Streptavidin, Alexa Fluor 488 Conjugate Thermo Fisher Scientific Cat#S11223

Streptavidin, Alexa Fluor 594 Conjugate Thermo Fisher Scientific Cat#S11227

Streptavidin, Alexa Fluor 647 Conjugate Thermo Fisher Scientific Cat#S21374

Fluoromount - G SouthernBiotech Cat#0100-01

Experimental Models: Organisms/Strains

PV-IRES-Cre Jackson Laboratories 008069; RRID: IMSR_JAX:008069

CaMKII-Cre Jackson Laboratories 005359; RRID: IMSR_JAX:005359

Ai32 Jackson Laboratories 024109; RRID: IMSR_JAX:024109

Ai14 Jackson Laboratories 007914; RRID: IMSR_JAX:007914

NTSR1-Cre MMRRC 030648-UCD; RRID: MMRRC_030648-UCD

Software and Algorithms

NEURON, version 7.5 Hines and Carnevale, 2001 https://neuron.yale.edu/neuron/download

Neurolucida MBF Bioscience https://www.mbfbioscience.com/neurolucida

MATLAB, version R2018b MathWorks https://www.mathworks.com/downloads/

Clampfit, version 10.6.2.2 Molecular Devices http://mdc.custhelp.com/app/answers/detail/a_

id/18779/~/axon%E2%84%A2pclamp%E2%84%A2-

10-electrophysiology-data-acquisition-%26-analysis-

software-download
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Omar

J Ahmed (ojahmed@umich.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All housing of animals and procedures were approved by the University of Michigan Institutional Animal Care and Use Committee.

Multiple mouse lines were used in this study, including PV-IRES-Cre (Jackson Laboratories, 008069), CaMKIIa-Cre (Jackson Lab-

oratories, 005359), Ai32 (Jackson Laboratories, 024109), Ai14 (Jackson Laboratories, 007914), PV-IRES-Cre x Ai14 (crossed in

house), PV-IRES-Cre x Ai32 (crossed in house), CaMKIIa-Cre x Ai32 (crossed in house), and NTSR1-Cre (MMRRC, 030648-UCD).

All mice excluding the NTSR1-Cre line were on a C57Bl6 background, while the NTSR1-Cre mice had a mixed C57Bl6/ICR back-

ground. Mice of both sexes between the ages of P21-31 and P60-65 were included in the experiments.

METHOD DETAILS

Physiological Experimental Methods
Slice preparation

A total of 193 recordings used for intrinsic physiology analyses are included in this study from the following mouse lines: PV-IRES-

Cre, CaMKIIa-Cre, Ai32, PV-IRES-Cre x Ai14, PV-IRES-Cre x Ai32, CaMKIIa-Cre x Ai32, and NTSR1-Cre. No differences in cell type

properties were observed across mouse lines, while both age and sex were explicitly analyzed in terms of their relationship to cell

type properties (see Results).

Mice underwent deep isoflurane anesthesia before decapitation. Brains were removedwithin onemin of decapitation and placed in

an ice-cold high-sucrose slicing solution that had been saturated with carbogen gas for at least 30 min prior to use. Coronal slices

(300um) were cut using a Leica 1200 VT vibratome. Slices were allowed to rest in the slicing solution for about 2 min before being

placed in a carbogen-saturated high-magnesium artificial CSF (ACSF) solution to incubate at body temperature (32�C) for 20 min.

The entire bubbling bath was then removed from the heater, allowing the slices to gradually cool to room temperature. Slices rested

an additional 30 min at room temperature before use.

Slices were submerged in a recording chamber with a constant flow of ACSF containing 126mMNaCl, 1.25mMNaH2PO4, 26mM

NaHCO3, 3 mM KCl, 10 mM dextrose, 1.20 mM CaCl2, and 1 mM MgSO4. Recordings were done between 29-31�C with an ACSF

flow rate of 2 mL per min. All recordings were done within 8 h of slicing to ensure reputable health of the cells. Patch pipettes with

2–3 mmdiameter and resistances of 3–6MUwere filled with a potassium gluconate internal solution containing 130mMK-gluconate,

2 mM NaCl, 4 mM KCl, 10 mM HEPES, 0.2 mM EGTA, 0.3 mMGTP-Tris, 14 mM phosphocreatine-Tris, and 4 mM ATP-Mg (pH 7.25,

�290 mOsm).

Whole-cell recordings

Slices were visualized using an Olympus BX51WI microscope equipped with Olympus 5x and 60x water immersion lens and the

Andor Neo sCMOS camera (Oxford Instruments, Abingdon, Oxfordshire, UK). In most cases, neurons were patched randomly within

layers 2/3 of RSG with the exception of experiments in which PV neurons were targeted for patching based on their expression of

either an eYFP tag (PV-IRES-Cre x Ai32 cross) or a tdTomato tag (PV-IRES-CRE x Ai14 cross). All recordings were done under current

clamp conditions using the Multiclamp 700B and Digidata 1440A (Molecular Devices). Neurons were adjusted for series resistances

and held at a resting potential of �65 mV (unless otherwise stated) using a constant holding current injection. Recordings were not

corrected posthoc for liquid junction potential. In order to characterize the different neuron types, intrinsic and firing properties of

recorded neurons were calculated using the Clampfit and MATLAB software packages.

Synaptic connections between neurons were tested using paired whole-cell recordings. 1 ms current pulses were delivered to the

presynaptic neuron at 10 Hz for a total of 1 s (10 pulses). The synaptic responses of the postsynaptic neuron were simultaneously

recorded while holding the postsynaptic cell at �55 mV.

Optogenetic testing of CaMKIIa expression

Optogenetic verification of CaMKIIa expression was conducted using CaMKIIa-Cre x Ai32 mice (Jackson Laboratories 005359 and

024109 respectively, crossed in house) in which channelrhodopsin is expressed in CaMKIIa-Cre-expressing neurons. Slices were

visualized with the Olympus BX51WI equipped with Olympus 5x and 60x water immersion lens. Expression of channelrhodopsin

wasmarked by fluorescence of the eYFP tag. Neurons were recorded in the samemanner as described above with at least one addi-

tional protocol to verify functional expression of the channelrhodopsin. One millisecond optogenetic light pulses with a 5,500K white

LED (Mightex; maximum power of 14.47mWmeasured at the slice focal plane) were delivered at 10 Hz while the neuronal responses

were recorded. Direct expression was verified by responses to the light pulses under 0.15 ms.

Morphological investigations with biocytin

Six RS and six LR cells were characterized for their morphology. To determine patched cells’ morphology, 5 mg/mL of biocytin was

added to the internal solution of recording electrodes. Cells were filled with biocytin (Sigma, cat. no. B4261) throughout the recording

session, and the pipette was left attached to the cell for at least 20 min. At the end of the recording, cells were ‘‘zapped’’ with fifteen
e2 Cell Reports 30, 1598–1612.e1–e8, February 4, 2020
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1 Hz pulses of 3–4 nA current to improve the diffusion of biocytin into the axon (Jiang et al., 2015). Slices were left to recover in the

recording chamber for 30 min before further processing. A detailed description of the biocytin labeling and processing is available

elsewhere (Marx et al., 2012). Briefly, slices were filled with biocytin as described above, placed in 4%paraformaldehyde (PFA; Acros

Organics, cat no. B0144942) for 12–15 h, and then transferred to phosphate buffer solution (PBS). After 24–48 h in PBS, slices were

incubated in avidin-biocytin (ABC Elite kit, VectaShield) for 12 h and then treated with peroxidase to reveal cell morphology. Finally,

slices were mounted on microscope slides with Mowiol-based embedding medium and allowed to dry for at least 12 h. Cells were

visualized using a Leica DM4000B light microscope equipped with a Leica DMC 6200 CMOS camera.

Morphological investigations with Alexa Fluor

To investigate cell morphology using fluorescence, biocytin (5 mg/mL, Sigma cat no. B4261) was added to the internal solution. Cells

were filled with biocytin for a total of 20–30 min each, and the slices were then moved to 4% PFA (Fisher Scientific, cat no. 50-980-

494) for overnight incubation. Afterward, slices were washed in PBS, permeabilized in 0.2% Triton-X (Sigma, X-100), and incubated

for 48 h in either streptavidin conjugated Alexa Fluor 488, 594, or 647 (1mg/1ml diluted to 1:1000, Thermo Fisher Scientific S11223,

S11227, or S21374 respectively). Slices were mounted on glass slides using Fluoromout-G mounting medium (SouthernBiotech, cat

no. 0100-01) and glass coverslips and visualized with Leica 6000B microscope equipped with a 10x objective and QImaging Retiga-

SRV Fast 1394 camera.

Morphological reconstructions

For morphological analysis, z stacks of filled cells were taken with the Leica SP5 confocal microscope using a 40x dry objective. Re-

constructions from z stacks were performed using user-guided mode in Neurolucida software and analyzed in Neurolucida Explorer.

Computational Modeling Methods
Model motivation

Biophysical modeling was utilized to study in detail the computational properties of LR and RS neurons and the possible coding

mechanisms by which they could contribute to the spatial navigation functions of the RSC. To this end, we constructed multi-

compartmental, biophysically realistic models of the two neuronal subtypes based on anatomical reconstructions and tuned the

model parameters so that their intrinsic properties closely match their experimental counterparts. The following section explains

in detail the active and passive properties of the LR and RS neuron models. Both LR and RS neuron models will be uploaded to

ModelDB (https://modeldb.yale.edu/260192). Unlike the experimental data, where junction potential was not adjusted for, all mem-

brane potential values listed below for the computational model should be considered adjusted for the junction potential.

LR neuron model
Morphology and passive properties

To further elucidate the computational properties of LR neurons, we constructed a biophysically realistic model based on their

anatomical reconstruction and physiological properties. The model’s morphology (Figure 6E) was imported in NEURON using the

import3D tool (Hines and Carnevale, 2001). Themodel has an input resistance and input capacitance of 384MU and 37.2 pF, respec-

tively, closely matching experimental values of LR neurons. Themembrane time constant of themodel is 14.29ms. The restingmem-

brane potential of the model is �77.8 mV.

Both LR and RS neuron models were simulated at a temperature of 30�C, and a q10 value of 3 (Hille, 2001) was used to scale the

temperature dependence of ion channel kinetics. The number of segments in each compartment was calculated using the d-lambda

rule (Hines and Carnevale, 2001). The axial resistivity for both models is 200 U-cm (Vierling-Claassen et al., 2010).

Active properties

Three voltage-gated ion channels were simulated for the LR neuronmodel: fast sodium current ðINaÞ, delayed rectifier potassium cur-

rent ðIKdrÞ, and Kv1 current ðIdÞ. In addition, a phenomenological mechanism ðIadapÞ for spike frequency adaptation was modeled

(Treves, 1993; Fuhrmann et al., 2002). The properties of these currents are described in detail in the following sections. The LR neuron

model has a spike half-width of 0.55ms and a spike threshold of�53.9 mV. Themodel exhibits very little spike frequency adaptation,

with an adaptation ratio of 1.1, as seen in the experimental data. For both models, the reversal potential of sodium ðENaÞ and potas-

sium ions ðEKÞ were set to +50 mV and �96 mV, respectively.

Fast sodium current
The fast sodium current ðINaÞ responsible for action potential generation was modeled based on Hodgkin Huxley formulation (Hodg-

kin and Huxley, 1952) using the experimental gating properties of transient sodium current found in RS neurons (Martina and Jonas,

1997). The channel was modeled with 3 activation gates and an inactivation gate. The channel was distributed in all the compart-

ments of the model, and their respective maximal channel conductance ðgmaxÞ is tabulated in Table S2. The channel equations

and parameters (Martina and Jonas, 1997) (voltage dependence of steady state activation/inactivation ðmN;hNÞ; time constants

of activation and inactivation gates ðtm;thÞ, channel current ðINaÞ) is given below.

mN =
1�

1+ exp

�
�
�
v � q m

s m

��� (Equation 1)
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hN =
1�

1+ exp

�
�
�
v � q h

s h

��� (Equation 2)
tm =

0
BB@
0
BB@0:022 +

3:6�
1+ exp

�ðv + 27:9Þ
7:6

��
1
CCA 3

0
BB@0:009 +

1:9�
1+ exp

��ðv � 1:3Þ
12:7

��
1
CCA
1
CCA (Equation 3)
th =

0
BB@0:31 +

14�
1+ exp

�ðv + 60Þ
12

��
1
CCA (Equation 4)

where qm = �22:8 mV ;sm = 11:8 mV;qh = �62:9 mV ; sh = �10mV .

INa = gmax 3m3 3 h3 ðVm �ENaÞ (Equation 5)
Delayed rectifier potassium current
Delayed rectifier potassium currents ðIKdrÞ are known to contribute to action potential repolarization in numerous neuronal subtypes

of the brain (Locke and Nerbonne, 1997; Murakoshi and Trimmer, 1999; Guan et al., 2007; Liu and Bean, 2014). We modeled this

current in the LR neuron model using the channel gating properties of delayed rectifier potassium currents found in RS neurons

(Liu and Bean, 2014). The channel model consists of 2 activation gates (Golomb et al., 2007) and no inactivation gates. The channel’s

activation time constant (Liu and Bean, 2014) was tuned such that the model’s spike half width matches the experimentally obtained

values. The channel was distributed in all the compartments of the model, and their gmax values are given in Table S2. The equations

for voltage dependence of steady state activation ðnNÞ and the activation time constant ðtnÞ of the channel is described below.

nN =
1�

1+ exp

�
�
�
v � q n

s n

��� (Equation 6)
tn =

0
BB@
0
BB@0:087 +

3:4�
1+ exp

�ðv + 35:6Þ
9:6

��
1
CCA 3

0
BB@0:087 +

3:4�
1+ exp

��ðv � 1:3Þ
18:7

��
1
CCA
1
CCA (Equation 7)

where qn = �20mV ;sn = 10:4mV

IKdr = gmax 3 n3 n3 ðVm � EKÞ (Equation 8)
Kv1 current
The Kv1 current (also known as the d-current,ðIdÞ) is a potassium current that is widely known to cause a delay to first action potential

in many neuronal subtypes (Storm, 1988; Goldberg et al., 2008; Kurotani et al., 2013). We modeled this current to capture the late

spiking property of LR neurons that is observed in our physiological data. The current was modeled using the Hodgkin Huxley

formalism (Hodgkin and Huxley, 1952) and based on experimental data (Wu and Barish, 1992) and a previously published model

(Golomb et al., 2007) with 3 fast activation gates and a slowly inactivating gate. This channel was distributed only in the somatic

compartment of the neuron (Table S2). The voltage dependence of steady state activation/inactivationðaN; bNÞ and their respective

time constants ðta; tbÞ of the channel are given below.

aN =
1�

1+ exp

�
�
�
v � q a

s a

��� (Equation 9)
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bN =
1�

1+ exp

�
�
�
v � q b

s b

��� (Equation 10)
ta = 1:4 ms; tb = 150ms (Equation 11)

where qa = �50mV ;sa = 20mV ;qb = �70mV ;sb = �6mV .

Id = gmax 3 a3 3b3 ðVm � EKÞ (Equation 12)
Adaptation current
Spike frequency adaptation wasmodeled using a linear mechanism ðIadapÞ as described in previous studies (Treves, 1993; Fuhrmann

et al., 2002). Iadap was modeled using the following equations (Treves, 1993).

Iadap = gðtÞ � ðVm � EKÞ (Equation 13)
dg

dt
= � g

tg
+gadap 3 dðt� tspikeÞ (Equation 14)

Briefly, when a cell fires an action potential, gðtÞ is increased by gadap, which decays to zero with a time constant of tg. tspike is the time

at which the neuron spikes, and EK is the potassium reversal potential. gadap = 10pS and tg = 500ms (Liu and Wang, 2001).

RS neuron model
Morphology and passive properties

The RS neuron model in our study is based on the biophysical and anatomical properties of RS neurons in layers 2/3 of RSG. The

morphology of themodel is based on anatomical reconstructions of its experimental counterpart (Figure 6A). Themodel’s input resis-

tance is 148MU and input capacitance is 96.6 pF. The model has a membrane time constant of 14.29 ms. The model’s resting mem-

brane potential is�74.95 mV. Thus, the model’s passive properties accurately replicate those of RS neurons in layer 2/3 of RSG. The

model’s ion channels and active properties are described in detail below.

Active properties

Similar to the LR neuron model, the RS neuron model has 3 voltage gated currents and a current for spike frequency adaptation

ðIadapÞ. The voltage gated currents incorporated in the RS neuron model are fast sodium current ðINaÞ, delayed rectifier potassium

current ðIKdrÞ and Kv1 current ðIdÞ. The model has a spike half width of 0.92 ms and a spike threshold of �54.12 mV. The spike fre-

quency adaptation ratio of the model is 2.5, closely matching the experimental values.

Fast sodium current
The fast sodium current of the RS neuron model was modeled using Hodgkin Huxley’s equations (Hodgkin and Huxley, 1952). The

channel’s voltage dependence of steady state activation/inactivation and their time constants were modeled using Equations 1, 2, 3,

4, and 5 (Martina and Jonas, 1997). The channel was distributed both in the somatic and dendritic compartments whose gmax values

are described in Table S2.

Delayed rectifier potassium current
The delayed rectifier potassium current ðIKdrÞ was modeled based on the channel gating properties of Kv2 currents found in RS neu-

rons (Liu and Bean, 2014). Similar to the LR neuron model, the channel consists of 2 activation gates and does not exhibit any inac-

tivation (Liu and Bean, 2014). Compared to LR neurons, the activation kinetics of IKdr was slower to account for the larger spike width

of RS neurons. The kinetics of this current was chosen to account for the spike width differences between the two neuronal subtypes,

as delayed rectifier potassium current plays a vital role in controlling the spike width of many central neurons (Erisir et al., 1999). The

channel was placed in the somatic and dendritic compartments of the model (see Table S2 for gmax values). The channel equations

are given below.

nN =
1�

1+ exp

�
�
�
v � q n

s n

��� (Equation 15)
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tn =

0
BB@
0
BB@0:087 +

9:4�
1+ exp

�ðv + 35:6Þ
9:6

��
1
CCA 3

0
BB@0:087 +

10:4�
1+ exp

��ðv � 1:3Þ
18:7

��
1
CCA
1
CCA (Equation 16)

where qn = �20mV ;sn = 10:4mV

IKdr = gmax 3 n3 n3 ðVm � EKÞ (Equation 17)
Kv1 current
In order capture the observed late spiking behavior of layer 2/3 RS neurons of the RSC, Id was also modeled in the RS neuron model.

The channel’s gatingmechanismsweremodeled using Equations 9, 10, 11, and 12 (Golomb et al., 2007). Id was distributed only in the

somatic compartment of the model (see Table S2 for gmax values).

Adaptation current
The spike frequency adaptation in the RS neuron model was modeled using the same schema ðIadapÞ as described for LR neurons

(Equations 13 and 14) (Treves, 1993; Fuhrmann et al., 2002). The following parameters were used for this current: gadap = 800pS and

tg = 500ms. In a subset of simulations (Figure 7), the adaptation current in RS cells was explicitly removed to study the contributions

of adaptation to RS input-output transformations.

Synaptic inputs

The LR and RS neuron models received background and burst synaptic inputs. 40 AMPA synapses and 40 GABA synapses were

uniformly distributed throughout the dendritic tree of both neuron models. Each of the background and burst inputs was randomly

assigned to one of the AMPA synapses in the dendritic tree of the LR and RS neuronmodels. The properties of background and burst

inputs are described in detail below. Similarly, each of the backgroundGABAergic inputs discussed belowwas randomly assigned to

one of the GABAergic synapses.

Background inputs

The RS and LR neuron models received 50 AMPAergic background inputs. The time course of synaptic conductance of these back-

ground inputs is given by the following equation (Sterratt et al., 2011; Sudhakar et al., 2019),

GðtÞ = gmax 3S3

�
exp

� �t

tdecay

�
� exp

��t

trise

��
(18)

where tdecay and trise represent decay and rise time constant, respectively. gmax is the maximal synaptic conductance, and S is a

normalization factor that equalizes the maximum of GðtÞ to gmax. The values of trise and tdecay were 0.5 ms and 2.5 ms, respectively.

The AMPAergic background inputs were modeled as Poisson spike trains with a frequency of 5 Hz and reversal potential of 0 mV

ðEAMPAÞ.
Similarly, phasic GABAergic inputs (50 inputs) were simulated for both models using Equation 18. The trise and tdecay values for

these inputs are 0.88 ms and 9.4 ms, respectively (Neymotin et al., 2011). Similar to excitatory background inputs, inhibitory inputs

were simulated at a frequency of 5 Hz and reversal potential of �80 mV ðEGABAÞ.
The gmax values of the excitatory and inhibitory background inputs were chosen to capture the low background firing rates of py-

ramidal neurons observed in vivo and the ratio of excitatory-inhibitory (E-I) synaptic input strength (Xue et al., 2014) of neurons in the

superficial layers of the cortex. For the LR neuron model, the gmax values of phasic excitatory and inhibitory background inputs were

set to 0.2 nS and 1.2 nS, therebymaintaining an E-I ratio seen in experiments (Xue et al., 2014). Similarly, for the RS neuronmodel, the

gmax vabib_Peyrache_et_al_2015blues of phasic excitatory and inhibitory background inputs were set to 0.6 nS and 3.6 nS, respec-

tively. The LR and RS neuron models have a background firing rate of �1 Hz (Dégenètais et al., 2002; Koga et al., 2010; Nakamura

et al., 2012).

Burst inputs

In addition to receiving background synaptic inputs, the models also received synchronous and identical burst inputs of various du-

rations (25 ms, 50 ms, 100 ms, 200 ms, 500 ms, 2000 ms). The LR and RS neuron models received stimulation from 20 synchronous

AMPAergic burst inputs. These inputs were jittered over a time period of 2ms and had a spiking probability which was varied from 0.1

to 1. The jitter and probability were varied across trials. The time course of synaptic conductance of burst inputs were modeled using

Equation 18. The tdecay and trise of these inputs was set to 0.5 ms and 2.5 ms, respectively. The strength of burst inputs ðgmaxÞ were

set to 1200 pS for both models. For each burst condition (duration), the models were run for 300 trials.

In vivo dataset related modeling

In order to determine if LR and RS neuronmodels can sustain continuous firing as would be expected from the firing of head direction

neurons in the preferred direction duringmotionless conditions, we stimulated the LR andRS neuronmodels with input spike trains of

neurons recorded from the postsubiculum that had one preferred head-direction angle (head-direction cells) of awake mice (Peyr-

ache et al., 2015). Spike data were downloaded from the website of CRCNS (Peyrache and Buzsaki, 2015) and given as input to the

neuron models. Briefly, the LR and RS neuron models were stimulated with 20 synchronous input spike trains of head direction
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neurons recorded from postsubiculum. Similar to the 200 Hz input simulations, the in vivo spikes were also jittered (2 ms) and had a

spiking probability that was varied from 0.1 to 1. Simulations were run for one entire awake epoch in the th-1 dataset, 1200 s in dura-

tion (Peyrache and Buzsaki, 2015). The simulations were repeated for 30 trials each. SNR was calculated according to Equation 19

below. The resulting SNR was binned and plotted as a function of stimulus duration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental Analysis and Statistics
Neuronal analysis and statistics

From the whole-cell recordings, the following intrinsic neuronal properties were calculated: resting membrane potential, spike

threshold, spike amplitude, spikewidth, input resistance (Rin), membrane time constant (tm), capacitance (Cin), afterhyperpolarization

(AHP) amplitude, AHP latency, spike frequency adaptation ratio, latency to first spike, and rheobase. Resting membrane potential

was recorded within 2 min of break-in. Cells with severely depolarized break-in potentials (>�55 mV) were not included in this study.

Spike threshold, amplitude, width, AHP amplitude, and AHP latency were calculated by averaging all spikes in the first sweep of a

600ms current step protocol that elicited a firing rate of at least 5 Hz. Spike threshold is calculated from the peak of the third derivative

ofmembrane potential (Cruikshank et al., 2012). Spike amplitudewasmeasured as the voltage change from the spike threshold to the

peak of the action potential. Spike width was calculated as the full-width at half-max of the spike amplitude. AHP amplitude was

calculated as the voltage change from spike threshold to the peak negativity of the AHP, and AHP latency as the time from peak

of the spike to peak negativity of the AHP. Input resistance (Rin), membrane time constant (tm), and input capacitance (Cin) were

calculated from a series of small negative current steps ranging from �5 pA to �30 pA, creating a deflection in membrane potential

of�2 to�4 mV. Rin was calculated using Ohm’s law, as the mean voltage change divided by mean current amplitude. tm was calcu-

lated by fitting a single exponential to the average of the initial 60 ms voltage response, ignoring the first 20 ms. Cin was then calcu-

lated from those two parameters using the formula tm = Rin 3 Cin. Spike frequency adaptation ratio was calculated from the

first sweep of the 600ms current step protocol that elicited a firing rate of at least 10Hz (6 spikes per 600ms) using the equation ISIlast /

ISIfirst. Rheobase was calculated as the minimum current required to elicit at least one action potential. Latency to first spike and

rheobase were each calculated from 1 s current pulses increasing in steps of 1–5 pA. Latency to first spike was calculated as the

time from the onset of the rheobase current pulse to the first spike.

To visualize this high-dimensional dataset including 10 normalized electrophysiological properties for each recorded cell (input

resistance, input capacitance, membrane time constant, rheobase, adaptation ratio, action potential amplitude, action potential

width, action potential threshold, AHP amplitude, and AHP latency), we applied Principal Component Analysis (PCA) to find the

most informative dimensions of the data. The loadings of each cell onto the first two principal components were plotted to visualize

variation in nearly all properties in a dimensionally reduced space. Cells were grouped into three defined groups (LowRheobase, Fast

Spiking, and Regular Spiking) as confirmed by the existence of distinct clusters in principal component space.

Cells which did not fall under the three defined categories were grouped as ‘‘unclassified.’’ This group consists of 10 cells with the

following characteristics: 4 cells that had very distinct intrinsic physiology, likely corresponding to other inhibitory subtypes, 3 cells

with uncharacteristically broad spike widths >1.6 ms, 2 cells with hybrid LR-like and RS-like characteristics, and 1 cell with FS-like

characteristics but with surprisingly broad action potentials.

A two-tailed Wilcoxon rank sum test was used to compute the statistical significance between the intrinsic properties of various

neuronal subtypes. To establish the statistical significance between the probability of E/I and I/E connections, a bootstrap resam-

pling (1000 bootstrap samples) method was used to generate a distribution of connectivity probabilities (Sudhakar et al., 2017).

Briefly, a connectivity matrix was generated which consists of a pre-synaptic label (E or I), post-synaptic label (E or I), and an obser-

vation (0 or 1) saying whether the pair is connected. This matrix was bootstrapped (n = 1000), and a distribution of E/I and I/E

connectivity probabilities was thus formed. Statistical significance was computed using a two-tailed t test (Henseler et al., 2009)

with a confidence interval of 95%. Significance in the number of LR neurons in layer 2/3 versus layer 5/6 was established by Pearson

chi-square test (Agresti, 2007). The same statistical test was used to establish whether the proportion of LR neurons in layer 2/3 was

significantly different from that of RS neurons.

Connectivity analysis and statistics

When analyzing connected pairs, latency to onset of an IPSP or EPSP was calculated as the time from the peak of the presynaptic

action potential to the onset of the postsynaptic IPSP or EPSP. Latency to peak was calculated as the time from the peak of the pre-

synaptic action potential to the peak of the postsynaptic IPSP or EPSP.

To test if the connectivity between different neuronal populations are significantly different from chance, we randomly shuffled the

pre-synaptic, post-synaptic labels and the observation (whether the pair is connected) for 1000 trials. By doing this, we established

the distribution of chance probabilities for each connectivity pair. We then utilized one-sample t test (two-tailed, 95% confidence in-

terval) to determine if the experimentally observed connectivity probabilities differed significantly from their chance distributions.

Morphological analysis and statistics

For morphological comparisons, cell body surface, number and length of dendrites, and Sholl analysis (at 10 mm intervals) were ex-

tracted directly from Neuron Summary, Sholl – dendrites, and Sholl – apical dendrites analysis results in Neurolucida Explorer. Apical
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and basal dendrites were added together for all calculations, and data were plotted in MATLAB using custom scripts. Statistical dif-

ferences were calculated using a two-tailed Wilcoxon rank sum test for all morphological comparisons.

Computational Analysis and Statistics
The models were simulated using NEURON 7.5 simulation environment (Hines and Carnevale, 2001) with an integration time step of

0.025ms. Simulation output was written into binary files and analyzed using custom programswritten inMATLAB (R2018b) software.

Spike threshold, spike half width, input resistance, membrane time constant, and input capacitance of the models were calculated

using the same method that was used for experimental data.

Signal to noise ratio (SNR) in response to the burst input was computed by calculating the number of spikes in response to the burst

input and comparing it with the background response for the same duration as the burst response. SNR in our study is calculated

using the following formula (Duguid et al., 2012),

SNR =
Sburst � Sbackffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 3 ðVarburst +VarbackÞ
p (Equation 19)

Sburst is the average number of spikes in ‘x’ ms post burst onset, where x = burst duration+125ms.Sback is the average number spikes

per ‘x’ ms from 4000 ms to 8000 ms post burst onset. Varburst and Varback are the corresponding variances of the number of spikes

during those two time intervals.

The spike timing precision (jitter) in response to the burst input was computed by calculating themedian absolute deviation of spike

latencies from all trials. Bootstrapped resampling was then used to compute a distribution of jitter values, and significance between

the jitter of LR and RS neurons was established by 2-tailed t test (95% confidence interval) (Sudhakar et al., 2015). Significance in the

probability of spiking between LR and RS neurons was established by Pearson chi-square test (Agresti, 2007) (95% confidence

interval).

For simulations related to Figure S4, location dependence of different synaptic inputs along the dendritic tree of LR and RS neuron

models was eliminated using the following equation,

gmaxscaled = gmax + ðgmax �dist �mÞ (Equation 20)

where the value of gmax is 1200 pS asmentioned before, and ‘dist’ is the Euclidean distance between the location of the synaptic input

on the dendritic tree and the model’s somatic location. The scaling factor, ‘m,’ was tuned until the location dependence of synaptic

input was removed/normalized.

DATA AND CODE AVAILABILITY

The NEURON models/code describing the LR and RS neuron models used in this study have been uploaded to ModelDB (https://

modeldb.yale.edu/260192). The experimental datasets generated in this study are available upon reasonable request to the corre-

sponding author.
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Figure S1. Low Rheobase cells are consistent across age, sex, and long-axis of the RSG. Related 

to Figure 1 and Table 1. 

A. Scatterplots of the three cell types plotted as a function of spike width and input capacitance across 

different age groups. Left panel, Postnatal days 21-26 (FS: n = 9; RS: n = 8; LR: n = 24). Middle panel, 

Postnatal days 27-31 (FS: n = 13; RS: n = 9; LR: n = 45). Right panel, Postnatal days 60-65 (LR: n = 3).  

B. Similar to A, now plotted across distinct anterior-posterior sections of the RSG. Left panel, -1 to -1.74 

mm from bregma (FS: n = 9; RS: n = 7; LR: n = 29). Middle panel, -1.75 to -2.49 mm from bregma (FS: n 

= 9; RS: n = 9; LR: n = 26). Right panel, -2.5 to -3.25 mm from bregma (FS: n = 4; RS: n = 1; LR: n = 17).  

C. Similar to A, but now plotted across sex. All three cell types exist and cluster consistently in both male 

(FS: n = 13; RS: n = 11; LR: n = 34) and female (FS: n = 9; RS: n = 6; LR: n = 38) mice.  

Cell numbers in each panel reflect neurons which had both the 600 ms current steps protocol and small 

negative current steps protocol run (see Methods). 

 

 

 



 

 

 

Figure S2. SNR of the RS and LR neuron models to inputs of various durations when the 

background firing frequency is increased to 10 and 20 Hz. Related to Figure 7. 

A. SNR of the RS and LR neuron models to 200 Hz input of varying durations when background firing 

frequency is 10 Hz. 

B. Same as A with background firing frequency increased to 20 Hz. 



 

 

Figure S3. Response of the RS and LR neuron models to in vivo like spike trains. Related to 

Figure 7. 

A. ISI distribution of in vivo spike trains showing peak firing rate at ~100 Hz. 

B. Distribution of spike latencies of the RS and LR neuron models when stimulated with 100 Hz spike 

trains for 2 seconds. 

C. Spike timing precision of the RS and LR neuron models in response to each spike of the burst input 

(*** p<0.001; two-tailed t-test). 

D. Spike probability of the two models to each individual spike within the burst input (*** p<0.001, * 

p<0.05; Pearson chi-square test). 

 

 



 
 

 

Figure S4. SNR of the RS and LR neuron models when location dependence of dendritic synaptic 

inputs was removed. Related to Figure 7. 

A. SNR of the RS and LR neuron models in response to 200 Hz burst input of varying durations. Synaptic 

inputs were normalized to get rid of the dendritic location dependence. LR neurons have superior SNR 

compared to RS neurons. The difference in SNR increases with stimulus duration due to the spike 

frequency adaptation of RS neurons (inset). 

B. Same as A, when both RS and LR neuron models were stimulated with realistic in vivo spike trains 

from the postsubiculum head-direction cell as shown in Fig. 7I. Therefore, even when dendritic location 

dependence of synaptic inputs was eliminated, the LR neuron model is characterized by superior SNR 

compared to the RS neuron model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S1. Low Rheobase (LR) neuron properties are consistent across age, AP, and sex. Related 

to Figure 1, Table 1, and Figure S1.  

Key intrinsic properties calculated for LR neurons grouped by age, AP, and sex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category P21-
P26 

 
(n) 

P27-
P31 

 
(n) 

P60-
P65 

 
(n) 

AP 
-1 to 
-1.74 
(n) 

AP 
-1.75 to 

-2.49 
(n) 

AP 
-2.5 to 
-3.25 
(n) 

Male 
 
 

(n) 

Female 
 
 

(n) 

Input 
resistance 

(MΩ) 

384.90 
± 25.61 

(33) 

416.01 
± 21.45 

(47) 

380.20 
± 52.80 

(3) 

397.06 
± 19.27 

(35) 

410.01 
± 31.99 

(30) 

399.85 
± 35.66 

(18) 

397.38 
± 22.92 

(38) 

406.54 
± 22.29 

(45) 

Input 
capacitance 

(pF) 

41.28 ± 
1.87 
(33) 

36.73 ± 
1.89 
(47) 

35.07 ± 
5.31 
(3) 

38.99 ± 
1.64 
(35) 

38.96 ± 
2.50 
(30) 

36.68 ± 
3.27 
(18) 

39.65 ± 
2.02 
(38) 

37.49 ± 
1.76 
(45) 

Action 
potential 

width (ms) 

0.60 ± 
0.04 
(35) 

0.52 ± 
0.02 
(62) 

0.53 ± 
0.02 
(3) 

0.53 ± 
0.02 
(44) 

0.54 ± 
0.04 
(32) 

0.62 ± 
0.03 
(24) 

0.55 ± 
0.02 
(51) 

0.56 ± 
0.03 
(49) 

Spike 
frequency 
adaptation 

ratio 

1.42 ± 
0.12 
(35) 

1.19 ± 
0.04 
(62) 

0.99 ± 
0.17 
(3) 

1.18 ± 
0.04 
(44) 

1.25 ± 
0.08 
(32) 

1.44 ± 
0.18 
(24) 

1.24 ± 
0.05 
(51) 

1.29 ± 
0.09 
(49) 

Rheobase 
(pA) 

39.40 ± 
2.68 
(42) 

41.68 ± 
3.36 
(36) 

40.44 ± 
15.11 

(2) 

37.64 ± 
2.79 
(39) 

40.62 ± 
4.12 
(26) 

46.84 ± 
4.21 
(16) 

41.84 ± 
2.52 
(43) 

38.84 ± 
3.41 
(37) 



 

 

 

Table S2. Model parameters. Related to Figures 6 & 7 and STAR Methods.  

The table lists the values of various model parameters and distribution of ion channel conductances in the 

somatic and dendritic compartments of the LR and RS neuron models. 

 

 

 

 

 

           RS neuron 
model 

RS neuron 
model 

LR neuron 
model 

LR neuron 
model 

Parameter Description Soma Dendrites Soma Dendrites 

Specific membrane 
resistance (kΩcm2) 

14.29 14.29 14.29 14.29 

Specific membrane 
capacitance (µF/cm2) 

1 1 1 1 

Membrane time constant 14.29 14.29 14.29 14.29 

Axial resistivity (Ω-cm) 200 200 200 200 

INa gmax (S/ cm2) 2 0.5 5.5 0.81 

IKdr gmax (S/ cm2) 0.02 0.008 0.07 0.006 

Id gmax (S/ cm2) 0.0125 0 0.075 0 

Iadap, gadap (pS) 600 0 10 0 
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